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Abstract. We present highly accurate Monte Carlo results for simple cubic Ising lattices
containing up to 2563 spins. These results were obtained by means of the Cluster Processor,
a newly built special-purpose computer for the Wolff cluster simulation of the 3D Ising
model. We find that the spontaneous magnetizationM(t) is accurately described byM(t) =
(a0 − a1t

θ − a2t)t
β , wheret = (Tc − T )/Tc, in a wide temperature range 0.0005< t < 0.26.

Any corrections to scaling with higher powers oft could not be resolved from our data, which
implies that they are very small. The magnetization exponent is determined asβ = 0.3269(6).
An analysis of the magnetization distribution near criticality yields a new determination of the
critical point: Kc = J/kBTc = 0.221 6544, with a standard deviation of 3× 10−7.

We consider the 3D Ising model on the simple cubic lattice, with nearest-neighbour
interactionsJ , at a temperatureT and a coupling strengthK = J/kBT . At criticality, the
spontaneous magnetization vanishes with a singularityM(t) ∝ tβ , wheret = (Tc−T )/Tc =
(K − Kc)/K parametrizes the distance to the critical point. However, this law applies only
in the limits of infinite system size andt → 0. Even for the infinite system there are
corrections due to non-zero values oft :

M(t) = ft (t)t
β (1)

whereft is some function oft , finite at t = 0.
For the 2D Ising model this function is known exactly, and it is analytic. However, in

the 3D case,ft is not analytic att = 0. The leading terms of its expansion neart = 0 are

ft (t) ≈ a0 − a1t
θ (2)

whereθ ≈ 0.5 is Wegner’s correction-to-scaling exponent [1].
Generally one would expect that there exist many more terms, containing higher powers

of t , in the expansion offt . Quite remarkably, we find that it is sufficient to add only one
term, −a2t , to equation (2), in order to describeM(t) of the simple cubic 3D Ising model
with very high accuracy. This does not only apply close tot = 0; it holds in a wide range
of t .

We found this intriguing fact using the Cluster Processor (CP) [2]. The CP implements
the cluster Wolff algorithm [3] in hardware, for 3D simple cubic Ising models with nearest-
neighbour interactions and periodic boundaries. Its memory and speed are sufficient to
simulate Ising systems containing up to 2563 spins. The CP was checked to give correct
results for 2D Ising systems. Moreover the CP data are also consistent with earlier very
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accurate simulations on 163 and 323 lattices [4]. In the CP, the system size can take the five
values 16, 32, 64, 128, 256 along each spatial direction. But the present work is restricted
to systems with the same sizeL in all three directions.

To determineft , one should eliminate the influence of the finite system size. This can
be easily achieved by a comparison of data for different sizes. The corrections due to finite
L can be described by a scaling functionfL:

M(t) = fL(Ltν)tβ (3)

where the exponentν describes the divergence of the correlation length when the critical
temperature is approached. The relation (3) is valid in the limitt → 0. The argument of the
function fL is proportional to the ratio of the finite size and the correlation length. Thus,
fL is expected to be a constant for large values of its argument.

The meaning ofM(t) in equation (3) has to be made more precise, since the average
magnetization of a finite system vanishes. Instead, we may define a non-zero expectation
value in terms of the absolute value ofM:

Mm = 〈|M|〉. (4)

We can also findM(t) from the spin–spin correlation function, using the relationM2 =
〈S(0)S(∞)〉. For a finite lattice this infinite distance can be replaced byL/2, half way to
the periodic images of the spins. Therefore we use the following expression as the second
definition of the magnetization:

Mc = 〈S(0)S(L/2)〉1/2. (5)

Finally, the magnetization can be defined asM2 = 〈M2〉1/2. This quantity has been studied
in [5] for the 2D Ising model and in [6] for the 3D case. In agreement with [5, 6] we found
that M2 is strongly affected by finite-lattice effects even for larget , so we do not useM2

in this paper.
The scaling functionsfL are different forMm andMc. This helps determine the ranges

of t where the finite-size effects become important.
Our data show, that for a givenL, the finite-size corrections toMm andMc are smaller

than the error bars fort > tL. For L = 32 this is illustrated by figure 1, which clearly
demonstrates thatMm and Mc coincide for t > t32, and t32 is about 1.5 × 10−2. From
figure 1 one can see that fort just below tL the corrections toMm andMc have different
signs, which facilitates determination oftL.

The value oftL can be estimated in the following way. The finite-lattice effects become
important when the correlation lengthξ ∝ t−ν is comparable withL. Therefore

at−ν
L = L (6)

wherea is a numerical coefficient. Taking into accountν = 0.63 [4], we geta ≈ 2, which
seems reasonable. According to equation (6), a doubling ofL decreasestL by a factor
21/ν ≈ 3. This is in agreement with figure 2, which shows the normalizedMm(t) results
for three different lattice sizes.

To studyft (t) we used data for lattice sizes ranging from 323 to 2563. Only data for
t > tL, whereMm and Mc coincide, were taken into account. The results forM(t) are
shown in figure 3, using a logarithmic scale on both axes. Close to the critical point, for
t < 0.02, the plot seems to be linear. However, attempts to approximate the data bytβP (t),
whereP(t) is an arbitrary polynomial int , were not successful. Figure 4 shows the poor
result of such an attempt. It describes the ratio of the simulation data to

Mint(t) = tβ(p0 + p1t + p2t
2 + p3t

3). (7)
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Figure 1. Normalized magnetizationMm(t) and the correlation function〈S(0)S(L/2)〉 ≡ M2
c

for the 323 lattice. M0(t) is given by equation (9). The normalization makes it possible to
expand the scale so that the small deviations ofM(t) from M0(t) become visible.〈S(0)S(L/2)〉
is close toM2

0(t), andM(t) is close toM0(t) for t > t32 ≈ 0.015. Fort > 0.26 the deviations
of the CP data fromM0(t) grow rapidly. In this low-temperature range the simulation data are
in excellent agreement with the Padé approximant of [9].

Figure 2. Normalized magnetizationMm(t) for three different lattice sizesL = 32, 64, and
128. The small-t behaviour displays the characteristics of the finite-size scaling functionfL

associated withMm.

The exponentβ and the coefficientspi were determined by the least-squares method, in
order to describe the simulation data as closely as possible by equation (7). Nevertheless,
the differences between the CP data and the approximation by equation (7) are much larger
than the error bars.

This suggests that we should use the form equation (2) instead to describeft (t). Thus
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Figure 3. Spontaneous magnetization of the 3D Ising model as a function oft , with a logarithmic
scale on both axes. The statistical errors in these data points are indicated, but they appear only
as single horizontal bars, because the errors are below the resolution of this figure. The data
shown here apply to different lattice sizes, and were taken in those ranges oft where finite-lattice
effects are negligible: they describe the infinite system magnetization.

Figure 4. Ratio of magnetization data to the approximationMint(t) given in equation (7), where
the functionft (t) was supposed to contain only integer powers oft . This figure demonstrates
that, without the Wegner correction to scaling, even a five-parameter fit according to equation (7)
does not describe the CP data properly. In this equation we used the same number of adjustable
parameters as inM0(t) (see equation 9), but, as can be seen by comparing figures 4 and 5, the
latter approximation is far better.

we wroteft (t) as a polynomial int1/2

ft1 = a0 − a1t
1/2 − a2t. (8)

Even the first attempt to approximate the simulation data astβft1 with β = 0.3267, taken
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Table 1. Results of least-square fits of the magnetization data obtained by the CP. These fits
were made for three choices of the critical couplingKc.

Kc β θ a0 a1 a2 χ2

0.221 6544 0.3269(3) 0.508(15) 1.692(4) 0.344(6) 0.426(11) 0.844
0.221 6541 0.3274(3) 0.490(15) 1.698(4) 0.340(5) 0.436(10) 0.859
0.221 6547 0.3265(3) 0.528(15) 1.686(4) 0.348(7) 0.414(12) 0.848

from [4], and a0, a1, a2 regarded as free parameters, was very successful. But the high
statistical accuracy of the CP data allows the use of even more adjustable parameters, and
we supposed that the magnetization can be described by

M0(t) = (a0 − a1t
θ − a2t)t

β (9)

in the interval 0.26 > t > 0.0005. The five parametersβ, θ and ai were determined by
a nonlinear least-squares fit. To estimate the influence of the uncertainty inKc, we fitted
the parameters not only for our best estimateKc = 0.221 6544 (see below), but also for the
lower and upper limits ofKc, defined by one standard deviation (3× 10−7) of the critical
coupling. The results are shown in table 1. The last column characterizes the quality of the
least-squares approximation. It is defined as

χ2 = 1

N − n

N∑
i=1

(
M(ti) − M0(ti)

σ (ti)

)2

wheren = 5 is the number of fitted parameters,N = 45 is the number of magnetization
data points, and theσ(ti) are the standard deviations of the magnetization dataM(ti). The
minimum of χ2 as a function ofK appears to occur nearKc = 0.221 6544 as determined
from an analysis of the magnetization distribution near the critical point (see below). This
agreement between two different approaches suggests that our scaling formulae are adequate.

From the data in the second column we estimate the magnetization exponent as
β = 0.3269(6), which is in a good agreement with earlier values, see e.g. [4] and references
therein.

The third column indicates thatθ = 0.508(25), supporting earlier results obtained by
means of anε-expansion analysis [7], series expansions [8] and a finite-size scaling analysis
of three different Ising models [4].

It should be emphasized that the errors in the parameters in table 1 are strongly
correlated; thus, equation (9) represents the magnetization data much more accurately than
one might naively expect from the quoted standard errors. In order to do justice to the
accuracy of this representation, we rewrite equation (9) using several additional decimal
places:

M0(t) = t0.326 941 09(1.691 9045− 0.343 577 31t0.508 420 26− 0.425 723 66t) (10)

where t = 1 − 0.221 6544kBT/J . This formula may serve as a very accurate empirical
approximation for the spontaneous magnetization of the simple cubic Ising model in the
region 0.26 > t > 0.0005.

In the range oft between 0.24 and 0.17, the results of equation (10) numerically coincide
with the Pad́e approximant of [9] within 10−5, while for smallert the approximation (10)
is superior.

The ratio of the CP data toM0(t) is shown in figure 5. The simulation data coincide
with M0(t) within the error bars. No systematic deviation of the CP data fromM0(t) can
be found.
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Figure 5. Normalized magnetization data, describing the infinite 3D Ising system. This figure
demonstrates that the expression equation (9) forM(t) agrees with the simulation data within
the statistical errors. The relative accuracy of the formula is as high as 10−3 for t ≈ 10−3, and
better than 10−4 for t > 0.01. This picture combines all the magnetization data, obtained with
different precisions and for different lattice sizes. Long simulation times were required for some
of these points in order to obtain such small error bars.

Table 2. Numerical results for the dimensionless ratioQL = 〈m2〉2
L/〈m4〉L for finite three-

dimensional Ising models close to the critical point. Also shown is the total number of Wolff
clusters flipped by the CP to obtain each numerical result.

L K QL Number of clusters

16 0.221 6530 0.633 81(5) 1× 109

32 0.221 6530 0.628 83(10) 3× 108

64 0.221 6530 0.624 69(79) 2.5 × 107

64 0.221 6545 0.626 70(25) 2.5 × 108

128 0.221 6530 0.621 89(168) 1× 107

128 0.221 6545 0.626 03(84) 4× 107

256 0.221 6530 0.615 55(180) 2.6 × 107

The functionft may also contain a term proportional tot2θ . Becauseθ is very close
to 0.5, the simulation accuracy is not sufficient to distinguish the term(a2t) in equation (9)
from the sum(a21t + a22t

2θ ).
The CP was also used for some additional calculations close to the critical point. We

obtained the dimensionless ratioQ = 〈m2〉2/〈m4〉, related to the Binder cumulant [10]. The
Q values are shown in table 2.

These data were combined with those available from [4] in order to determine the critical
point more accurately. NearTc, the bulk correlation length satisfiesξ � L, so thatLtν ,
and hence(K − Kc)L

yt , is small. ThusQL(K) can be expanded as

QL(K) = Q + q1(K − Kc)L
yt + q2(K − Kc)

2L2yt + b1L
yi + b2L

y2. (11)

The renormalization exponentsyt and yi are related toν and θ as yt=ν−1 and yi=−θ/ν.
The substitutions of the valuesyt = 1.587(2), yi = −0.82(6) and y2 = −1.963(3), taken
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from [4], into equation (11) was found to describe the combined data satisfactorily. A
least-squares fit was used to determineKc. For system sizesL > 5 the same fit as in [4]
yieldedKc = 0.221 6544(3), where the standard error includes the uncertainty in the input
parameters. As a final estimate we quoteKc = 0.221 6544(6) with an error of two standard
deviations, in order to account for a possible bias introduced by our choice of the form of
equation (11). The additional data in table 2 permitted a clear improvement of the accuracy
in comparison with [4]. This new value for the Ising critical point is in a good agreement
with a number of recent results obtained by several other methods, such as series expansions
and Monte Carlo renormalization. These results are summarized e.g. in [11] and [4].

We calculated the irrelevant exponentyi in two ways. First, it can be obtained as
a product ofθ = 0.508(25), found from table 1, andyt = 1.587(2) [4]. The result is
yi = −0.81(4). Another possibility is to includeyi as a free parameter in theQL(K) fitting
procedure. This yieldsyi = −0.83(9), in agreement with the result obtained above. Our
values foryi agree with theε-expansion [7] as well as with other results, see e.g. [4] and
references therein.

Furthermore, we have combined the new data for〈m2〉 near the critical point with those
obtained in [4] for the nearest-neighbour model with system sizes up toL = 40. The
analysis was based on the expected scaling behaviour of the susceptibility (see [4])

Ld〈m2〉 = c0 + c1(K − Kc) + · · ·
+L2yh−d [d0 + d1(K − Kc)L

yt + d2(K − Kc)L
2yt + g1L

yi + g2L
2y ′

]

with Kc = 0.221 6544 andy ′ = −2.1. The renormalization exponentyh is related to the
magnetic susceptibility critical exponentγ : 2yh −d = γ /ν. The analysis forL > 5 yielded
yh = 2.4808(16) where we again quote a two-sigma error. This result is in good agreement
with [4] and references therein, and with [12].
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